Effect of Sympathetic Stimulation on Airway Resistance

Tapas Pramanik*, Ratna Keshari Tako, Shristi Bajracharya, Esha Shrestha, Anup Chalise
Department of Physiology, Nepal Medical College, Jorpati, Kathmandu, NEPAL.

ABSTRACT

Introduction: Sympathetic stimulation causes bronchodilation. Exercise is a physiological variation that brings the body systems in sympathetic domain. In the present study we tried to assess the effect of sympathetic stimulation (through moderate exercise) on alteration of airway resistance.

Methods: Young healthy volunteers (n=35, age=19-25 yrs) participated in the study. Just before the exercise FVC, FEV1, PEFR and FEF25-75% were measured by using Spirometer (SpiroExcel, Medicaid). Then the volunteers were asked to perform the Harvard Step Test for 3 minutes and again the aforesaid parameters were measured. Data was analysed by using Student’s t-test.

Results: The study recorded significantly increased values of FVC, FEV1, PEFR and FEF25-75% immediately following the exercise. (p<0.05)

Conclusions: Increased FVC immediately following the exercise denoted better performance of respiratory muscles due to better perfusion in them as a result of sympathetic stimulation. Increased values of FEV1, PEFR and FEF25-75% following exercise indicated effect of sympathetic stimulation on smooth muscles of respiratory airways. Increment of FEF25-75% indicates specially the increased caliber of terminal bronchioles, made up of smooth muscles only, which was dilated by sympathetic stimulation through β2 receptor, resulting better alveolar ventilation.

KEYWORDS: Sympathetic stimulation, FVC, FEV1, PEFR and FEF25-75%

INTRODUCTION

Reports support the effectiveness of moderate aerobic exercise training in reduction of resting heart rate1 and in enhancement of cardio-respiratory efficiency.2 Moderate intensity aerobic exercise training (30 min/day, 4 days/week, for 12 weeks) was found to increase aerobic capacity even in the older adults (>60 years).3 Exercise training for 6 months in type II diabetics (age 39-54years) improved VO2 max in them by 1.73 ml O2/kg/min.4 Even in chronic heart failure patients, mild exercise (exercise for a minute or less followed by rest of 2 minutes) training increased VO2 max.5 The immediate effect of moderate isotonic aerobic exercise on blood pressure and heart rate has also been studied.6 Nevertheless, data about the effect of it on pulmonary functions is scanty. This study was undertaken to assess the immediate effect of moderate aerobic exercise on pulmonary function test parameters in young adult volunteers.

MATERIALS AND METHODS

Young healthy volunteers (n=35, age=19-25 yrs) participated in the study. Their height and weight were recorded. BMI of volunteers were calculated by the formula BMI=weight in kg / (height in meter^2).7 Just before the exercise FVC, FEV1, PEFR and FEF25-75% were measured by using spirometer (SpiroExcel, Medicaid) following the guidelines of American Thoracic Society.8 Then the volunteers were asked to perform the Harvard Step Test for 3 minutes. They were asked to place one foot on a 10 inch high stool, step up, place both feet on the platform, straighten the legs and back, and immediately step down again, bringing down the same foot he/she first raised. This stepping up and down was continued at the rate of 20 steps per minute, following the rhythm of a metronome, for 3 minutes.8,9 Immediately, after exercise the participant sat quietly on a chair and again the aforesaid parameters were measured. Data was then analyzed by using Student’s t-test.

RESULTS

All the volunteers of our study were eutropic (BMI within 18-23 kg/m^2).7 The study recorded significantly increased FVC, FEV1, PEFR and FEF25-75% immediately following the exercise. (p<0.05) The result has been presented in the table 1.
DISCUSSION

Previous study noted lower values of MVV, FVC, FEV₁ and ERV in obese adolescent males, compared to their eutropic counterparts before and after exercise. In the present study all the volunteers were eutropic, none was obese [BMI within 18-23]. FEF₂₅-₇₅% is an indicator of patency of smaller airways. Earlier studies indicated reduced FEF₂₅-₇₅% as an indication of airflow obstruction. Present study recorded increase in FEF₂₅-₇₅% value following exercise. Recent study of kegel exercise training among the young females [3 times/day for 4 weeks] also noted increased FVC, FEV₁, PEFR, IC and MVV along with marked improvement in FEF₂₅-₇₅%. Chistopher et al. (2015) noticed better PFT results following an 8 weeks exercise training in obese Malaysian individuals. Exercise in all the cases used to increase sympathetic activity. In our study also, we noted significantly increased value of FVC, FEV₁, PEFR and FEF₂₅-₇₅% following exercise indicating effect of sympathetic stimulation on bronchial smooth muscles.

Increment of FEF₂₅-₇₅% indicates the increased caliber of terminal bronchioles, made up of smooth muscles only, which was dilated by sympathetic stimulation through β₂ receptor, resulting better alveolar ventilation. Furthermore, physical exercise caused hyperdynamic circulation that caused shear force to the endothelium of pulmonary vessels; NO was formed, diffused to vascular smooth muscle cells preventing the vasoconstriction. [Usually, sympathetic stimulation causes constriction of vessels of viscera through alpha receptor stimulation.] Naturally, moderate isotonic exercise induced reduction of smaller airway resistance that facilitates alveolar ventilation is beneficial as it increases cardio-respiratory efficiency.

ACKNOWLEDGEMENTS

Authors are thankful to Dr. Shekhar Babu Rizyal, Principal, Dr. Anjan Rijal, Vice-Principal and Dr. Shiba Kumar Rai, Research-Director; Nepal Medical College and Teaching Hospital for their cooperation and help. We are also indebted to the volunteers and all the professors and colleagues of Department of Physiology, NMCTH, for their active support.

REFERENCES

Table 1: Comparison of pulmonary function parameters before and after exercise (n=35)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Before exercise (Mean±SD)</th>
<th>After exercise (Mean±SD)</th>
<th>P value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (L)</td>
<td>3.17 ± 0.83</td>
<td>3.50 ± 0.81</td>
<td>p < 0.05</td>
<td>Significant</td>
</tr>
<tr>
<td>FEV₁ (L)</td>
<td>2.78 ± 0.74</td>
<td>3.11 ± 0.73</td>
<td>p < 0.05</td>
<td>Significant</td>
</tr>
<tr>
<td>FEV₁/FVC (%)</td>
<td>86.84 ± 9.35</td>
<td>89.76 ± 7.9</td>
<td>p > 0.05</td>
<td>Insignificant</td>
</tr>
<tr>
<td>PEFR (L/S)</td>
<td>7.32 ± 1.81</td>
<td>8.55 ± 2.56</td>
<td>p < 0.05</td>
<td>Significant</td>
</tr>
<tr>
<td>FEF₂₅₋₇₅% (L/S)</td>
<td>4.45 ± 1.45</td>
<td>5.49 ± 1.41</td>
<td>p < 0.05</td>
<td>Significant</td>
</tr>
</tbody>
</table>

Source of Support: Nil.

Conflict of Interest: None Declared.

Copyright: © the author(s) and publisher. IJMRP is an official publication of Ibn Sina Academy of Medieval Medicine & Sciences, registered in 2001 under Indian Trusts Act, 1882.
This is an open access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.