Assessment of Hypertension among Young Population: A Prospective Study

Subhash Chand Bansal

Principal Specialist (General Medicine), Raj Bahadur Memorial Hospital, Bharatpur, Rajasthan, India.

ABSTRACT

Background: High blood pressure (BP) is an important risk factor for attributable burden of disease. Globally, about 62% of cerebrovascular diseases and 49% of ischemic heart disease are attributable to elevated blood pressure (BP) that could have been reduced by antihypertensive drug therapy. Hence, we planned the present study to assess the prevalence of hypertension (HTN) among young adults.

Materials & Methods: The present study included assessment of prevalence and pattern of hypertension among young population. A total of 400 subjects were included in the present study. All the subjects were called for general physical and medical screening. Five blood pressure readings were noted and mean value was obtained from them. All the results were recorded and analyzed by SPSS software.

Results: HTN was seen to be present in 11 percent of the study population. Among males and females, prevalence rate of HTN was found to be 12 percent and 10 percent respectively.

Conclusion: Among young population, HTN pose a significant health problem.

Key words: Hypertension, Young Adults, Diagnosis.

INTRODUCTION

In the south Asian region, High blood pressure (BP) ranks third in the list of risk factor for attributable burden of disease. Hypertension (HTN) exerts a substantial public health burden on cardiovascular health status and healthcare systems in India.1,2 HTN is directly responsible for 57% of all stroke deaths and 24% of all coronary heart disease deaths in India. The WHO rates HTN as one of the most important causes of premature death worldwide.3 The Global and Regional Burden of Disease and Risk Factors study, in a systematic analysis of population health data for attributable deaths and attributable disease burden, has ranked HTN in south Asia as second only to child underweight for age.4 Globally, about 62% of cerebrovascular diseases and 49% of ischemic heart disease are attributable to elevated blood pressure (BP) that could have been reduced by antihypertensive drug therapy.5,6 Hence; we planned the present study to assess the prevalence of HTN among young adults.

MATERIALS & METHODS

The present study was conducted in the department of general medicine of Raj Bahadur Memorial Hospital, Bharatpur, Rajasthan. The study included assessment of prevalence and pattern of hypertension among young population. Ethical approval was taken from institutional ethical committee and written consent was obtained after explaining in detail the entire research protocol. A total of 400 subjects were included in the present study. Inclusion criteria for the present study included:

▪ Subjects between the age group of 18 years to 35 years;
▪ Subjects with negative history of any other systemic illness,
▪ Pregnant subjects

All the subjects were called for general physical and medical screening. A questionnaire was framed for extracting information from patients regarding their socio-demographic details, complete physical and family history etc. Blood pressure and other investigations were performed in all the subjects. Sphygmomanometer was used for measuring the blood pressure of the patients and confirming the diagnosis of hypertension. Patients with history of smoking and alcohol drinking were instructed to stop intake of them 24 hours before the examination procedure. Five blood pressure readings were noted and mean value was obtained from them. All the results were recorded and analyzed by SPSS software. Chi-square test and student t test were used for assessment of level of significance. P-value of less than 0.05 was taken as significant.
RESULTS
In the present study, we included a total of 400 subjects, out of which, 200 were males and the remaining 200 were females. Smoking habit was present in 7.5 percent of the subjects while alcohol drinking habit was seen in 12.5 percent of the subjects. Family history of HTN was present in 20 percent of the subjects. HTN was seen to be present in 11 percent of the study population. Among males and females, prevalence rate of HTN was found to be 12 percent and 10 percent respectively.

Graph 1: Demographic details of the subjects

Table 1: Prevalence of HTN among subjects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HTN present (Number)</th>
<th>HTN present (%)</th>
<th>HTN absent (Number)</th>
<th>HTN absent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>44</td>
<td>11</td>
<td>356</td>
<td>89</td>
</tr>
<tr>
<td>Males</td>
<td>24</td>
<td>12</td>
<td>176</td>
<td>88</td>
</tr>
<tr>
<td>Females</td>
<td>20</td>
<td>10</td>
<td>180</td>
<td>90</td>
</tr>
</tbody>
</table>

Graph 2: Prevalence of HTN among subjects

DISCUSSION
In the present study, while assessing the prevalence of HTN, we observed that HTN was present in 11 percent of young adult population. Bhadoria AS et al studied the difference in the prevalence of hypertension and associated risk factors in urban and rural populations and the association of hypertension with various determinants. A community-based cross-sectional study was conducted in 48 villages and 15 urban wards of Jabalpur District of Central India. Nine hundred and thirty-nine individuals aged 20 years and above (624 from rural areas and 315 from urban areas) were included in the study. The prevalence of hypertension and associated cardiovascular risk factors was assessed in the urban and rural populations. A pretested questionnaire was used to collect data on socio-demographic, behavioral, and dietary factors. Anthropometric measurements of weight, height, waist and hip circumference, and blood pressure measurements were taken using the standard methodology.
The glucose oxidase–peroxidase and cholesterol oxidase–
cholesterol peroxidase methods were used to measure plasma
glucose and serum cholesterol, respectively. Bivariate analysis
was followed by multivariate analysis to detect the odds of getting
hypertension with various risk factors for the urban and rural
populations separately. Hypertension was defined as per Joint
National Committee (JNC) - VII criteria. The response rate was
97%. Overall prevalence of hypertension was 17%, with 21.4% in
the urban population and 14.8% in the rural population.
Significantly higher mean values of weight, height, body mass
index (BMI), hip circumference (HC), waist circumference (WC),
waist hip ratio (WHR), systolic blood pressure (SBP), fasting blood
sugar (FBS), and serum cholesterol levels were mapped in the
urban population in comparison with the rural population.
Multivariate logistic regression analysis identified increasing age,
parental history of hypertension, tobacco smoking, tobacco
chewing, physical inactivity, high estimated per capita salt
consumption, and BMI ≥27.5 kg/m2 as independent predictors for
hypertension in the urban population, while in the rural population,
increasing age, physical inactivity, central obesity, tobacco
chewing and tobacco smoking were independent predictors for
hypertension. The prevalence of hypertension and other
cardiovascular risk factors was high in both urban and rural
communities. Therefore, there is a need for comprehensive health
promotion programs to encourage lifestyle modification.7
Bonsa F et al assess the prevalence of hypertension and its risk
factors among adults in Bedele Town, South-west Ethiopia. A
community-based cross-sectional survey was conducted by
interviewing participants regarding their socio-demographic
characteristics, history of hypertenison, its risk factors and
knowledge of its complications and treatment. Measurements of
their blood pressure, body weight, height, and waist
circumferences were also done on the same day. The data were
analyzed using SPSS Version 16 statistical software. Chi-square
test and odds ratio with 95% CI were used to assess the
association between dependent and independent variables.
Logistic regression model was used to determine the independent
risk factors for hypertension. P-values of < 0.05 were considered
statistically significant. A total of 396 adults of whom 67.4% were
males participated in the study. Prevalence of hypertension,
defined as systolic blood pressure ≥140 mmHg or diastolic blood
pressure ≥ 90 mmHg or reported use of anti-hypertensive
medication, was 16.9%. However, only 44.8% of those with
hypertension were aware of their status, and the overall control
rate of hypertension was only 22.4%. Only age and waist
circumference were found to be independent predictors of
hypertension in the community.8 Anchala R et al conducted a region-
specific systematic review and meta-analysis of the prevalence,
awareness, and control of hypertension among Indian patients.
Medline, Web of Science, and Scopus databases from 1950 to 30
April 2013 were searched for ‘prevalence, burden, awareness,
and control of blood pressure (BP) or hypertension (≥140 SBP
and or ≥90 DBP) among Indian adults’ (≥18 years). Of the total
3047 articles, 142 were included. Overall prevalence for
hypertension in India was 29.8%. Significant differences in
hypertension prevalence were noted between rural and urban
parts. Regional estimates for the prevalence of hypertension were
as follows: 14.5%, 31.7%, 18.1%, and 21.1% for rural north, east,
west, and south India; and 28.8%, 34.5%, 35.8%, and 31.8% for
urban north, east, west, and south India, respectively. Overall
estimates for the prevalence of awareness, treatment, and control
of BP were 25.3%, 25.1%, and 10.7% for rural Indians; and
42.0%, 37.6%, and 20.2% for urban Indians. About 33% urban
and 25% rural Indians are hypertensive. Of these, 25% rural and
42% urban Indians are aware of their hypertensive status.9

CONCLUSION
From the above results, the authors conclude that among young
population, HTN pose a significant health problem. Therefore; we
require further epidemiological studies for reducing the morbidity
associated with the disease.

REFERENCES
1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-
Rohani H, et al. A comparative risk assessment of burden of
disease and injury attributable to 67 risk factors and risk factor
clusters in 21 regions, 1990-2010: a systematic analysis for the
2. Leeder S, Raymond S, Greenberg H, Liu H. A race against
time. The challenge of cardiovascular disease in developing
6. Divan V, Chauhan V, Panchal S, Bansal RK. Prevalence of
hypertension among workers of a fertilizer company in Surat
cardiovascular risk factors in Central India. J Family Community
8. Anchala R et al. Hypertension in India: a systematic review and
meta-analysis of prevalence, awareness, and control of
Factors in Bedele Town, Southwest Ethiopia. Ethiop J Health Sci.

Source of Support: Nil. Conflict of Interest: None Declared.

Copyright: © the author(s) and publisher. IJMHP is an official
publication of Ibn Sina Academy of Medieval Medicine &
Sciences, registered in 2001 under Indian Trusts Act, 1882.
This is an open access article distributed under the terms of the
Creative Commons Attribution Non-commercial License, which
permits unrestricted non-commercial use, distribution,
reproduction in any medium, provided the original work is properly
cited.

Cite this article as: Subhash Chand Bansal. Assessment of
Hypertension among Young Population: A Prospective Study. Int J